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LETTER TO THE EDITOR 

Localized electron states in elastic materials with 
disclinations 

V A Osipov and S E Krasavin 
Joint institute for Nuclear Reswch. Bogoliubov Laboratory of Theoretical Physics, 141980 
Dubna, Moscow Region. Russia 

Received 8 November 1994. in final form 21 December 1994 

Abstract. In the framework of a gauge approach the problem of an electron localization 
in elastic materials with disclinations is investigated. The straight wedge disclinations, both 
topologically stable and unstable. as well as the disclination monopole. are considered. It is 
shown that for the topologically stable wedge, a disclination strongly localized in the core 
region elecmn states appears. For the topologically unstable negative wedge disclination and 
disclination monopole, the localization process is found to depend essentially on the depth of 
the deformation potential. The levels of localized electrons as well as the exact form of the 
normalized wavefunctions of the ground state are obtained numerically. 

As is well known (see, e.g., [l]), the presence of defects even in minor concentrations 
can essentially modify electronic properties of materials, first of all semiconductors. This 
problem was studied in detail for point impurities [Z] and linear translational defects- 
dislocations [3-6]. In both cases, the interaction of an electron with the longitudinal 
acoustic vibrations can result in localization of the electron at defects. The electron states 
in disclinated materials are less well understood. Qualitative analysis performed recently 
17, 81 showed the possibility for the binding of electrons to negative disclinations. 

In this letter, we study numerically the problem of an electron localization in disclinated 
materials in the context of the gauge model proposed in [9]. This model is the natural 
extension of the Edelen-Kadi6 gauge model [ 101 for an elastic continuum with dislocations 
and disclinations. The interaction of electrons with elastic media is considered in 
the framework of the deformation-potential theory. The validity of the effective mass 
approximation is assumed. When the defect fields are considered as the external ones, the 
stationary Schrodinger equation takes the following general form (cf [7]) 

Here m i B  is the effective electronic mass tensor, and V ( T )  is the deformation potential. 
The electron energy E is measured relative to the bottom of the conduction band in the 
undeformed crystal. As is seen, the most important deviation from the standard model 
is the replacement of the conventional derivative = a /axA by the covariant one Da. 
In the presence of dislocations, the translational symmetry of elastic media is broken, so 
that the gauge group is T(3). In this case 1111, the covariant derivative coincides with the ' 
conventional one, so that we arrive at the standard model known in dislocation theory L3-61. 

For disclinations the gauge group is the rotational one. There are two kinds of symmetry 
which are appropriate for disclination problems. The first one is the spherical symmetry 
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which occurs for point disclinations such as the known 'hedgehog' in liquid crystals [12]. 
In this case the gauge group is G = SO(3) and the covariant derivative is determined to 
be  DAY)^ = a A Y j  - i.s;W;Yk where W; are the gauge fields due to disclinations and 
cyk is a completely antisymmetric tensor. The second kind of symmetry is the cylindrical 
one that holds for linear disclinations. In this case only rotations in the plane normal to 
the defect line are of importance, so that the gauge group reduces to G = SO(2). The 
covariant derivative then takes the form DAY = ( a ~  - iWA)Y. Thus, for rotational defects 
a perturbation appears not only in the potential energy due to the deformation potential, but 
in the kinetic energy as well. 

Let us restrict consideration to acoustic deformations. As is known [l], in general, there 
are six independent components of the deformation-potential tensor. For cubic crystals they 
can be reduced to two components, so that the deformation potential takes the form 

(2) 

where EAB is the sfrain tensor,  AB = EAB - ~ ~ A B S ~ E A B ,  and Gd and G, are the 
deformation potential constants. In the following, we will restrict consideration to isotropic 
materials where carriers belong to a singlet band centred at k = 0, where IC is the 
wavevector. This is often the case for the conduction band in materials of zincblende 
or wurtzite structures. The only strain component that can affect the energy of such a band 
is the dilatation, i.e. only the first term in (2) has to be taken into account. Accordingly, 
the effective mass tensor reduces to a scalar m*. 

Let us consider the linear disclination oriented along the z-axis. In this case, the exact 
solution of the problem was found to have a vortex-like form. Particularly, the gauge fields 
WA were found to be [13]: 

v(T) = -GdSPEAB(T) - Gn xllAB(T)(m*,)-'DADB 
A,B 

w, = 0 WO = W(r) = v / r  W, = 0 (3) 
where U is the Frank index. The exact solution of the problem has been obtained for two 
cases: (a) small U ;  this corresponds to the partial topologically unstable disclinations, and 
(b) U = 1; a complete topologically stable disclination. 

It is important to note that in either case the dilatation was found to depend only 
on the radial vector T in the xy  plane. The electron wavefunction can be chosen as 
Y&, y .  z)  = Yu,(r, +)Y,g(z). Then, the stationary Schrodinger equation (1) is rewritten 
in the following form: 

Here we have used the ansatz YE(?) = Ejuk(r)e"'/&, j = 0 , i l . f 2 ,  ... and 
k2 = 2m*E/h2. The effective potential in (4) consists of two pms, the deformation- 
potential energy and the so-called centrifugal energy. 

Let us note once more that the most important distinction from the case of dislocations 
and point impurities is that the interaction of an electron with the gauge field due to 
disclinations modifies the kinetic term as well. It is clear that this modification will result in 
a principally new situation for the localization process. A theoretical analysis of dislocated 
materials showed [5, 61 that the localized electron states always exist (at least with j = 0) , provided that the deformation potential is the attractive one. This is not the case for 
topologically unstable disclinations with the fractional Frank index where even for j = 0 
there exists a compensating positive term in (4) caused by the centrifugal energy. Hence the 
problem of the electron localization in this case requires an additional analysis. To proceed 
further we need the explicit form of the deformation potential. 
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Let us consider first a disclination with a small Frank index in a cylinder with an inner 
radius R, and an external radius R. Taking into account the explicit form of the strain 
tensor (see, e.g. [14, 15]), the effective potential in (4) is written as 

~~. - 
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(5) 
u ( l  - 2u) 
2(1 - U) 

Uj(r) = 

where U is the Poisson constant. A simple qualitative analysis shows that the potential (5) 
is repulsive for v c 0 (it corresponds to~the positive disclination [14]) and, obviously, the 
localized electronic states do not appear in this case. On the other hand, for U > 0 (negative 
disclination) the effective potential (5) may be the attractive one. This case is of interest to 
us hcre. 

Figure 1. The effective potential (5) (in eV) for the small-angle straight wedge disclination: 
Y = 0.1-solid line, v = 0.0843shed line, Y = O.O&squares. The paramerer set used is: 
R = 5 x cm, m' = 5 x IO4 eV, Gd = IO eV. o = 0.41. j = 0. 

We performed numerical calculations with the wide set of parameters. The physically 
interesting region in R is R - 10-6-10-5 cm which corresponds to the mesoscopic structural 
level of the plastic deformation. As is known (see, e.g. [U]), in crystallites of this size 
the creation of the small-angle (partial) disclinations becomes energetically preferable in 
comparison with dislocations of the same geometry. Notice that in this case R/Rc - lo2, 
so that the last term in the square brackets of (5) is negligible. Figure 1 shows the effective 
potential (5) for different U. Depth of the potential well is found to vary over a wide 
range with the model parameters used. At U = 0.1, the lo west^ electron levels are found 
to be E:=' = -0.41 eV, E;=' = -0:38 eV, E{=' = -0.09 eV, and E{=' = 0.07 eV. At 
U = 0.08, E{=' = -0.27 eV, whereas at U = 0.06, E;=' = -0.17 eV. The discrete electron 
levels become deeper when the depth of the well increases. The electron wavefunctions 
are presented in figure 2. As is seen, a logarithmic potential results in a , d u a l  decrease 
of the electron wavefunctions with r .  Therefore, in fact, this state is not a localized state 
but it corresponds to a resonance state. Notice that the amplitude of the wave functions 
decreases rapidly with decreasing of U. An exact solution for topologically stable linear 
disclination which corresponds to the complete straight wedge disclination has been~found 
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Figure 2. The wavefunctions of the ground state for the small-angle straight wedge disclination 
(schematically shown as M insen in the upper right-hand corner. o = 2rv)  with Y = 0.1-solid 
line, U = 0.08--dashed line, Y = O.O&-squares. The parameter set is the same as in figure 1. 

Figure 3. The effective potential (6) (in eV) for the complete straight wedge disclination with 
v = 1: ru = 20 i - s o l i d  line, ru = 15 .&--squares. The parameter set used is: m* = 5 x 104 
eV. Gd= 10eV. D =  1. j =  1. 

in [13]. It is important to note that this solution contains the information about the core 
region of the disclination. Namely, we found the explicit form of the deformation potential 
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Figure 4. Normalized wavefunctions of the ground state for the complete straight wedge 
disclination (schematically shown as an inself in the upper right-hand comer) with v = 1. 
Designations and the parameter set are the same as those in figure 3. 

in a wide space region including the core of a defect. The effective potential was written 
as follows [7] 

where D = 4(h +p)/3(h+2p),  h and p are the Lam6 constants, K ( j )  = ( j  - ~)~?i*/2m*. 
The point r = ~ r o  in (6) turns out to be the boundary between two regions: the core region 
where deformations are large, and the region beyond the core where deformations decrease 
slowly and tend to a constant value at r -+ CO. In this letter, we will analyse the case 
I = 0. One can see that for j = 1, the potential (6) becomes the attractive one. and, 
therefore, the discrete levels exist at any set of the model parameters. This conclusion is 
confirmed by numerical calculations. Figure 3 shows the effective potential for different 
ro. The corresponding wavefunctions are presented in figure 4. At ro = 20 A the lowest 
electron level is E:=' = -2.5 eV. For the state with j = 0 the localization takes place as 
well but with the lower amplitude, and E, - -0.62 eV. As ro increases, the depth of 
the potential well rapidly increases and the first electron level becomes remarkably deeper. 
Conversely, for small ro, the well is shallow and the lowest level lies close to the edge of 
the continuum electron spectrum. For ro = 15 A, 

Strictly speaking, description of the strongly localized electron states is beyond the 
applicability of the effective mass approximation. That is why the results concerning deep 
electron levels must be considered only as the qualitative ones. Let us remark, however, that 
sometimes the use of the effective mass approximation for description of strongly localized 
electron states (e.g., electrons localized in the core region of a dislocation [I61 or electrons 

j=O - 

= -0.83 eV. 
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Figure 5. Normalized wavefunctions of the ground state for the disclination monopole 
(schematically shown as an insen in the upper right-hand comer) ru = 10 A-solid line, rg = 9 
k - s q u ; ~ s .  The pmmeter set used is: m* = 5 x IO' eV, Gd = 6 eV. B = 1. I = 0.5. 

localized in the plane, see discussion in [17]) gives even a quantitative agreement with 
experimental results. 

Let us consider the point-like disclination with the exact solution [IS] called the 
disclination monopole. The gauge fields WA were found to be [18] 

X B  

r2 ' wi(XB) = E:g- (7) 

Because of the spherical symmehy, the solution of (1) can be chosen in the form 
W(xA) = P(r)q(e, @). Then, for the radial wavefunction equation ( I )  is written as 

where the effective potential takes the form [18] 

(9) Uj(r) = 

Here B = 2(3b+ 2@)/3(h+2@), K ( J )  = [ J ( J  + 1) - 1/4]R2/2m*, J = 1/2 at j = 0, 
J = j f 1/2 at j = I ,  2 . .  ._ Qualitative analysis showed [I91 that a potential well can 
occur in the core region. For a sufficiently deep well, the discrete electron levels and the 
localized states can appear. 

Let us study this problem in detail by solving (8) with the potential (9) numerically. 
Figure 5 shows the exact form of~the  wavefunctions for different ro. One can see that 
the localized states really appear but their amplitudes decrease with decreasing of rg. It 
should be noted that there is an important difference between the results obtained for the 

(3/2)Gd - BGd cosh2[f cosh-'(r~/r)~] + K ( J ) / r 2  r d ro 
r 2 ro. I (3/2)Gd - BGd c ~ s ~ [ i c o s - ' ( r o / r ) ~  + $".I] + K(J)/r2 
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disclination monopole and those for a complete wedge disclination. Namely, as was found 
above, the localized electron state always~exists for the complete wedge disclination, at 
least for j = 1. In the case of the disclination monopole, the last term in (9) turns out to 
be non-zero for any j .  Thus the potential well may appear to be too shallow to localize 
the electron. In fact, the depth of the well is found to be very sensitive to the value of 
ro. At ro = 10 A the lowest electron level is E, = -3.3 eV whereas at ro = 9 A 
E:=’” = -1.1 ev. 

Let us summarize the main results. We showed that the binding of electrons to a 
small-angle straight wedge disclination can take place only for the negative disclination. 
The amplitude and the position of the resonance electron state depend on the depth of the 
potential well. The first excited state is that with j = 1. For the complete straight wedge 
disclination (U = 1) the localization was found to always be present for a state with j = 1. 
In contrast to the small-angle defect, the first excited state in this case is the state with 
j = 0. In both these cases, an electron is free to move along the z-axes. For a disclination 
monopole, the localization takes place only for a sufficiently deep potential well. When this 
takes place, an electron becomes completely captured by the disclination. 

Part of this work has been financially supported by the grant from Russian Fund of 
Fundamental Research No 94-02-05867. The research described in this publication was 
made possible in part by grant N WROM) from the International Science Foundation. 
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